
M A R C H 1 9 9 4

Object Linking and Embedding 2.0
Questions and Answers

· What about the IBM System Object Model (SOM) and the
IBM Distributed System Object Model (DSOM)? Are
they technically superior to the OLE 2.0 architecture?

No. In fact, SOM and DSOM do not address many critical issues that are successfully
addressed by OLE 2.0 and the Component Object Model. Some of these areas are listed in the
accompanying comparison of OLE 2.0, OpenDoc, SOM and DSOM technologies. Unlike
OLE, SOM and DSOM are an incomplete object solution. For instance, neither SOM or DSOM
has built-in support for compound documents, a key customer requirement. To get these
capabilities, IBM is relying on the OpenDoc consortia, through which multiple vendors are
contributing source code and development time to produce a more complete specification.
SOM also has some serious architectural limitations as a system object model, and does not
compare to the more advanced architecture of OLE 2.0 and the underlying Component Object
Model (COM). For instance, to achieve distributed object support, a different object model, the
Distributed System Object Model (DSOM), is required. DSOM requires source code and
binary modifications to SOM objects. Distributed object support for OLE will require no
modifications to today’s OLE 2.0-enabled applications.

SOM objects can only be combined within a single address space. Any object being used by an
application can crash the entire application. Also, multiple applications cannot share the same
SOM object. OLE gives objects the capability to be combined in the same or separate address
spaces, as required. This protects applications from crashing when an individual object
crashes; and it also allows multiple applications to share objects. DSOM does allow objects to
be combined across different address spaces, and thus be shared between multiple applications.
Unlike OLE, however, DSOM does not provide built-in software coordination for cross-
application object interoperability. This coordination must be coded by individual
programmers, effectively eliminating any possibility of integrating packaged software using
DSOM, since different companies may implement different coordination models. This is a
severe limitation. With OLE, objects in different address spaces are automatically coordinated
by the OLE system software, and therefore OLE-enabled applications can be seamlessly
integrated out-of-the-box.

Furthermore, SOM and DSOM are technologies that straddle object-oriented programming
technology and true object-enabling system software technology. Because of this, neither meet
the need for a robust, system software object model. For instance, the SOM/DSOM model
allows objects to inherit source-code implementations from other objects through uncontrolled
class hierarchies. While this arguably can make developing objects faster, it does so while
sacrificing system robustness (see Microsoft’s Object Technology Strategy: Applications
Without Limits, Appendix B).

Moreover SOM and DSOM identify objects with simple names, not globally unique identifiers.
This will lead to naming conflicts in systems with many objects, and any system with objects
supplied by different vendors, because object names cannot be properly coordinated. OLE uses
globally unique identifiers (GUIDs) to guarantee no naming conflicts. Furthermore, unlike
OLE 2.0, SOM and DSOM lack a logical thread model to prevent object deadlocks, lack a
security model, lack robust object versioning control, and suffer from other limitations outlined

Object Linking and Embedding 2.0 Questions and Answers 2

in the accompanying technical comparison. All of the SOM limitations will also be limitations
in the OpenDoc architecture, since this architecture will draw on SOM for its object model.

Today, SOM provides an object model that integrates with the IBM® OS/2® WorkPlace ShellTM.
However, the OS/2 WorkPlace Shell has only a few native applications, while OLE 2.0
provides object integration potential for the almost 10,000 native Windows applications. There
are today many OLE 2.0-enabled applications available for the Windows platform, with
hundreds more that are soon to be released. In addition, OLE 2.0 will soon be available for the
Apple Macintosh platform, and support for multiple versions of UNIX and other platforms is
planned. While IBM has announced plans to develop SOM support for the Windows platform,
no Windows implementation has been made available.

As a technology integrated with the IBM OS/2 WorkPlace Shell, SOM will not provide
applications seamless integration with the object-based innovations that Microsoft is building
into the Microsoft Windows Family of operating systems. These innovations are based on OLE
2.0 and the more robust COM architecture, and are aimed at providing superior integration
between applications and object-based system services, such as drag and drop to the desktop,
integrated OLE Custom Controls, object interfaces to distributed system services, and many
other important innovations.

· Isn’t OpenDoc superior to OLE 2.0?

Absolutely not. OpenDoc is a proposal for a compound document architecture that will be
based on separate technologies supplied by Apple and IBM. For instance, Apple will supply
core OpenDoc compound document features; Bento, a file system; and its Open Scripting
Architecture to give objects a cross-application scripting ability similar to OLE Automation.
IBM at some time in the future will supply its System Object Model (SOM). However, key
parts of the development effort have been split not only between IBM and Apple, but also
among other partners in the OpenDoc consortia including WordPerfect and Borland. It remains
to be seen if these different technologies can be gracefully combined and supported by many
different vendors in a coherent, customer-focused manner. Unlike OLE 2.0, preliminary
specifications were not distributed to all major software vendors for open industry review
(preliminary OLE 2.0 specifications were reviewed by over 150 different ISVs).

Perhaps most importantly, OpenDoc requires that application vendors create, distribute and
maintain two separate versions of their programs. One runs in standalone mode, while the
other is a series of special “parts” that can be loaded into the address space of a container
application to create a single, monolithic compound document application. This raises
questions about the costs and eventual availability of OpenDoc applications. OLE, on the other
hand, enables the seamless integration of shrink-wrapped software, and does not require
software vendors to supply special “parts.” Vendors simply write their applications to be OLE-
enabled, and then they are ready to be integrated out-of-the-box with any other OLE-enabled
application on the market. This is a much more efficient and practical model which has already
been adopted by hundreds of major software vendors.

Furthermore, OpenDoc is at best a paper specification that has not been publicly released for
any platform, and has only been demonstrated for the Macintosh® computer. Even so, a close
look at the separate technologies on which it is based reveal some serious shortcomings in the
OpenDoc architecture. Many of these are specifically identified in the accompanying technical
comparison of OLE 2.0, OpenDoc and IBM SOM/DSOM. OpenDoc does not attempt to
address several important issues, such as distributed object support. OLE with distributed object
support has been distributed to over 5,000 developers in pre-release form. Many other areas of
architectural weakness stem from weaknesses that will be inherited from the IBM SOM

-more-

Object Linking and Embedding 2.0 Questions and Answers 3

architecture. For example, since all objects in a single OpenDoc document must execute in the
same address space, any single object can crash/corrupt the entire document; and multiple
applications cannot share the same object. OLE gives objects the capability to run in separate
address spaces, protecting compound documents from crashing when an object crashes; and
also allowing multiple applications to share objects.

To understand many of the other limitations of OpenDoc, read the accompanying comparison
of these technologies, titled Object Linking and Embedding 2.0, OpenDoc and SOM/DSOM: A
Comparison of Technologies. Also, read the previous question and answer that address IBM
SOM. A recent PC Week article summed up the OpenDoc architecture as follows:

“Shortcuts taken by Apple will result in the re-design of aspects
of OpenDoc. The documentation is unclear as to when these
changes will occur, specifying only that ‘later in the development
cycle’ the hierarchy will be replaced by one based on IBM’s
SOM.”
(“First OpenDoc Spec Raises Many Questions” PC Week, January
10, 1994)

Microsoft is firmly committed to OLE and the Component Object Model. These technologies
are more advanced than the technologies on which OpenDoc is based, and were refined in an
Open Process in which major software vendors participated in open design reviews starting as
early as January, 1992. These vendors included Apple Computer, Claris Corp., Lotus
Development Corp., WordPerfect Corp. and Borland International, and many others.
Preliminary specifications for OLE 2.0 were also distributed to over 150 other software vendors
for further feedback. OLE is a proven technology that is available with many shipping
applications, with hundreds more on the way. OLE is being implemented on the Apple
Macintosh (it is in beta testing now), and the technology is being made available on many
UNIX systems.

Finally, OLE 2.0 and the Component Object Model are the foundation for Microsoft’s future
releases of the Windows Family of operating systems. Applications built using OLE 2.0
technology today will be ready to seamlessly integrate with the system-level OLE support in
these coming releases of Windows. This means existing OLE applications not only give
benefits today-- they are “ready-made objects” that will provide seamless integration with the
most powerful object-based system environments on the horizon: the next generation of
Windows (“Chicago”, targeted for late 1994); and the next generation of Windows NT
(“Cairo”, targeted for the middle of 1995).

· What about Taligent? Isn’t it a powerful, object oriented
operating system?

Taligent was started as a joint effort between Apple and IBM to produce a fully object-oriented
operating system that would eventually replace IBM OS/2 and the Apple’s System 7. Since it
was formed, however, its mission has been redefined several times. While a complete OS is
still planned, today Taligent is focused on creating application frameworks that will allow
applications to tap into source-code object classes. Application frameworks exist for the
purpose of simplifying software development. Instead of having to write source code that
implements low-level APIs that are native to an operating system, frameworks “wrap” such
lower-level APIs into higher levels of abstraction. Further, by encapsulating much of the
primitive functionality into reusable classes, a developer is free to write less, more specialized
code. Application frameworks, such as Taligent, are thus class libraries.

-more-

Object Linking and Embedding 2.0 Questions and Answers 4

Today, companies like Microsoft, Borland, Symantec, and others provide such frameworks to
ease software development. In fact, the Microsoft Foundation Classes (MFC) is the most
popular object-oriented framework available, and can be used to more easily build component
objects with full OLE 2.0 capabilities. Many of these frameworks, including MFC, have been
refined over many years. How Taligent will add value as a new and competing framework is
unclear. Also left unanswered is the question of how the Taligent Frameworks will support
Apple Macintosh, Windows and OS/2-based applications, and at the same time be integrated
into future IBM operating systems such as the WorkPlace OS. Today, even the Taligent
Application Frameworks have not been commercially released, and according to Taligent, will
likely not be released in their first shipping version until late 1994 or 1995.

· What about CORBA and the Object Management Group
(OMG)? Everyone but Microsoft seems to support this
open industry standard. Why doesn’t Microsoft
support CORBA?

The Common Object Request Broker Architecture (CORBA) is a specification, not a product.
By OMG’s own admission, the CORBA specification is very limited. In fact, no two CORBA
compliant products interoperate with even basic CORBA services. The OMG continues to
refine its specification, and it plans to release a more complete specification, but this will
probably not be available until late 1995 or later. If this future version of CORBA eliminates
the functional deficiencies in the current specification, and customers determine that the
specification meets unfulfilled needs, then Microsoft will help build CORBA interoperability
into OLE and COM. Today, however, Microsoft is not saying OLE and COM are CORBA-
compliant, because this claim is misleading to customers. The CORBA specification is:

· Functionally deficient - CORBA defines so few critical object model functions that it
cannot be used without significant proprietary extensions. In fact it defines only about
15% of a complete, workable system object model.

· Unable to provide basic object interoperability. No two shipping products that claim
CORBA-compliance can interoperate, unless specific, proprietary and non-CORBA
extensions are made to achieve interoperability. Because of these limitations, and the fact
that there is no certification process, “CORBA-compliance” is undefined.

Some vendors have used the OMG CORBA label, however, to create the illusion of
interoperability, and this has lead to significant confusion. Microsoft has taken a more
pragmatic approach, and is focused on delivering value to customers today, through OLE 2.0
and the Component Object Model.

Microsoft is committed to delivering open systems, and has laid out a strategy to continue to do
so (see ‘Open Systems: Technology Leadership and Collaboration, part number 098-55058).
OLE and the underlying Component Object Model (COM) are open, proven technologies.
OLE 2.0 was refined through an Open Process. Almost every major software vendor
participated in the open design reviews as early as January, 1992, including Apple Computer,
Claris Corp., Borland International, Lotus Development Corp., WordPerfect Corp. and many
others. Additionally, preliminary OLE 2.0 specifications were distributed for review to over
150 other ISVs. Today, the OLE specification is fully published, is being made available on all
major platforms. There are no license fees for distributing OLE 2.0-enabled applications, and
as an open specification, OLE provides a platform for broad industry participation and
innovation.

-more-

Object Linking and Embedding 2.0 Questions and Answers 5

OLE 2.0 for the Apple Macintosh platform is in beta testing, and will soon be available. OLE
2.0 applications will be able to interoperate between the Microsoft Windows and Apple System
7 platforms. Microsoft has also signed an agreement with Digital Equipment Corporation to
build OLE/COM support into Digital’s ObjectBrokerTM product. This agreement will lead to
OLE interoperability with multiple operating system platforms, including SunOSTM, IBM AIX®,
DEC® OpenVMS, DEC ULTRIX® and OSF/1. Support for even more platforms is planned for
the future. Unlike CORBA, OLE-enabled component objects are guaranteed to interoperate
with other OLE-enabled component objects, because OLE 2.0 is a fully functional, object-
enabling system software based on the architecturally robust Component Object Model.

The Microsoft object strategy also allows for open, industry innovation and enhancements to
the architecture. The OLE/COM strategy provides corporations, system integrators and
software vendors a platform on which to build new and exciting applications which achieve a
level of interoperability that no other object platform can match.

It is important to understand that a key part of the Microsoft open systems strategy is to
incorporate market-driven standards in a customer-focused manner. A good example is
Microsoft’s adoption of TCP/IP, a proven, market-accepted (de facto) networking standard.
CORBA is not a market-accepted standard-- rather it is a committee-based (de jure)
specification that is far from complete. John H. Rymer, editor of the Distributed Computing
Monitor, states:

“Users have comparatively little say when technology is
conceived and molded by a standards body. Our fundamental
belief is that markets are the best way for a group of vendors and
customers to determine the direction of a technology.”
(Distributed Computing Monitor, January, 1994, Patricia Seybold
Group)

OLE is a technology that was refined by input from hundreds of software vendors, and was
fundamentally architected to meet customer requirements today, as well as tomorrow. The
success of OLE can be concretely measured. OLE has broad industry acceptance: hundreds of
vendors are incorporating OLE 2.0 support into their applications and development tools. OLE
has won numerous industry awards including the Technology Award for Excellence, BYTE
Magazine; the Technical Excellence Award, PC Magazine; and the MVP: Software
Innovation Award, PC-Computing. And OLE has been endorsed by the most important player
of all: customers, through the widespread purchase of software that is today fully OLE 2.0-
enabled. Today, over 1.5 million component objects with OLE 2.0 capabilities are being used
by customers across all major industries.

-more-

Object Linking and Embedding 2.0 Questions and Answers 6

· What about Novell’s Appware product, how does OLE fit
in?

The Novell® Appware product, which is still very much under development, is a mix of several
technologies that were developed by different companies, and then acquired by Novell.
Appware is an attempt to combine these technologies in order to produce a “virtual API”.
Other than the fact that the Appware provides a set of C++ classes, it does not provide any
object-enabling system software. In fact, Novell has publicly stated that Appware will support
OLE 2.0, as well as OpenDoc.

As a virtual API, Appware’s goal is to provide a layer of software that will make applications
portable between Windows, Macintosh, OS/2 and UNIX. It is important to understand,
however, that the Windows API (Win32) is becoming a portable API. It will soon be available
for UNIX through Insignia Solutions, and it can be freely licensed for other platforms as well.
Microsoft is also making the Win32 API available for the Macintosh, providing source-code
application portability between Windows and Macintosh implementations. And by writing to
the Win32 API, independent software vendors are guaranteed that applications will run with
full native performance on the highest-volume desktop platform - Windows.

Using a virtual API supplied by a third-party such as Novell, on the other hand, has some
limitations. Such APIs have been available for many years (such as XVT and Galaxy), but they
have met with limited success. There are several reasons. First, any virtual layer of software
must make sacrifices in the features it supports for each different operating system in order to
provide complete portability. Any feature that is not fully supported across all operating
systems (and there are many), are usually dropped. The “lowest common denominator”
approach of third-party virtual APIs lead to disappointing applications that offer no competitive
advantage. In addition, virtual APIs must translate calls to the native operating system, and are
typically much slower than native implementations.

But by using the Win32 API and the hundreds of tools and applications available that use this
API, applications will run with full, native performance on the most popular, highest volume
desktop platform -- the Windows Family. Furthermore, since Windows provides so many
advanced enabling technologies such as extensive multimedia support, TrueType fonts, OLE
2.0 support and many more, no sacrifices in application features need be made when using the
Win32 API as a cross-platform technology.

Many corporations are reluctant to deploy applications based on a third-party API such as
Appware, because this makes the corporation completely dependent on the provider of the
virtual API to provide technological innovation. For example, as Microsoft and other industry
leaders introduce software innovations to the Windows Family, these innovations must be
incorporated into the virtual API by the API provider. This occurs (at best) with significant lag
time, while the innovations will be immediately available to applications written to the cross-
platform Win32 API. Or worse yet, the innovation might not be incorporated into the virtual
API at all, because it might make the virtual API non-portable. Thus, while adding some value
for less critical applications, third-party virtual APIs can present real dangers to corporations
which want to avoid getting trapped into the API, and locked out of the cycle of rapid industry
innovation. In today’s competitive, global economy, it is not surprising that third-party virtual
APIs have not been widely accepted. The good news is, the Win32 API will provide the
highest level of cross-platform support, without making the sacrifices of a technology such as
Appware.

-more-

Object Linking and Embedding 2.0 Questions and Answers 7

· What about other object models, such as Hewlett-
Packard® DOMF (Distributed Object Management
Facility), Sun DOE (Distributed Object Everywhere),
and NeXTTM NextStep?

These technologies may someday offer value for corporations adopting a UNIX-only strategy.
However, only NeXTStep is available today, and none of these systems successfully address the
need for an open, robust object model for the mainstream corporate desktop, nor do they
interoperate with each other. These models, unlike OLE 2.0, do not provide a standard for
object interoperability in the high-volume, packaged software market. They do not enable the
critical integration between desktop applications and enterprise back-end services. To better
understand how these technologies compare with OLE, see the accompanying table “Object
Technology Strategies: How They Compare.”

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed
as of the date of publication. Because Microsoft must respond to changing market conditions it should not be interpreted
to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented
after the date of publication.

This Document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESSED OR
IMPLIED, IN THIS DOCUMENT. Copyright 1994 Microsoft Corporation. All rights reserved.

Discussions on Apple OpenDoc , IBM SOM and DSOM, Taligent, Sun Doe, Hewlett Packard DOMF, NeXT NextStep,
and Novell Appware are based on publicly available information, which is subject to change.

Microsoft, MS-DOS, PowerPoint , Visual Basic and Win32 are registered trademarks and Windows, Windows
NT are trademarks of Microsoft Corporation.

All other product names are the trademarks of their respective holders.

-more-

